Name: \qquad

1] A] Please complete the following definition: we say that a function $f: X \rightarrow Y$ is injective if

B] Please complete the following definition: we say that a function $f: X \rightarrow Y$ is surjective if

C] Give two different examples of functions $f: \mathbb{R} \rightarrow \mathbb{R}$ which are injective but not surjective.

D] Give two different examples of functions $f: \mathbb{R} \rightarrow \mathbb{R}$ which are surjective but not injective.

E] Give two different examples of bijective functions $f: \mathbb{R} \rightarrow \mathbb{R}$.

2] Please complete the following definitions.
A] A group is a set G together with an operation $*$ satisfying the following axioms:

B] A group G is called abelian if

C] A non-empty subset H of a group G is a subgroup if and only if the following two conditions hold:

- for every $h, k \in H$,
- for every $h \in H$,

D] If G is a group and a is an element of G then the cyclic subgroup generated by a is the subgroup
$(a)=$

E] A group G is called cyclic if

3] Let $G=\mathbb{R}-\{0\}$ be the set of all non-zero real numbers. For all $a, b \in G$ define $a * b=-\frac{a b}{7}$.
Is it true or false that G with respect to this operation $*$ is a group?
State explicitly which group axioms hold and which ones (if any) fail.

4] In S_{4} consider the subset $H=\left\{\operatorname{id},\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4\end{array}\right),\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4\end{array}\right),\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2\end{array}\right)\right\}$.
Is it true or false that H is a subgroup of S_{4} ?
State explicitly which subgroup axioms hold and which ones (if any) fail.

5] Let G be a group and let a, b, c be elements of G such that $a b=c a$. Prove that for all $n \geq 1, a b^{n}=c^{n} a$.

6] Let G be a group and assume that for all $g \in G$ we have $g^{-1}=g$. Prove that G is abelian.

7] Let G be a group and $Z(G)=\{a \in G \mid \forall g \in G, a g=g a\}$ its center.
Prove that $Z(G)$ is a subgroup of G.

8] A] For an integer $n \geq 2$, what is the definition of U_{n} ?

B] Find explicitly the number of elements in U_{495}.

C] Is [256] an element of U_{495} ? Explain your answer, and if your answer is 'Yes' then compute the inverse of [256] in U_{495} and express it as [a] with $0<a<495$.

