1] A] Please complete the following definition: we say that a function $f: X \to Y$ is *injective* if

B] Please complete the following definition: we say that a function $f: X \to Y$ is surjective if

C] Give two different examples of functions $f \colon \mathbb{R} \to \mathbb{R}$ which are injective but not surjective.

D] Give two different examples of functions $f \colon \mathbb{R} \to \mathbb{R}$ which are surjective but not injective.

E] Give two different examples of bijective functions $f \colon \mathbb{R} \to \mathbb{R}$.

- 2] Please complete the following definitions.
 - A] A group is a set G together with an operation * satisfying the following axioms:

- B] A group G is called *abelian* if
- C A non-empty subset H of a group G is a *subgroup* if and only if the following two conditions hold:
 - for every $h, k \in H$,
 - for every $h \in H$,
- D] If G is a group and a is an element of G then the cyclic subgroup generated by a is the subgroup
 - (a) =
- E] A group G is called *cyclic* if

3] Let $G = \mathbb{R} - \{0\}$ be the set of all non-zero real numbers. For all $a, b \in G$ define $a * b = -\frac{ab}{7}$. Is it true or false that G with respect to this operation * is a group? State explicitly which group axioms hold and which ones (if any) fail. 4] In S_4 consider the subset $H = \left\{ \text{ id, } \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} \right\}.$

Is it true or false that H is a subgroup of S_4 ?

State explicitly which subgroup axioms hold and which ones (if any) fail.

5] Let G be a group and let a, b, c be elements of G such that ab = ca. Prove that for all $n \ge 1$, $ab^n = c^n a$.

6] Let G be a group and assume that for all $g \in G$ we have $g^{-1} = g$. Prove that G is abelian.

7] Let G be a group and $Z(G) = \{ a \in G \mid \forall g \in G, ag = ga \}$ its center. Prove that Z(G) is a subgroup of G.

- 8] A] For an integer $n \ge 2$, what is the definition of U_n ?
 - B] Find explicitly the number of elements in U_{495} .

C] Is [256] an element of U_{495} ? Explain your answer, and if your answer is 'Yes' then compute the inverse of [256] in U_{495} and express it as [a] with 0 < a < 495.